A Robust System for Longitudinal Knee Joint Edema and Blood Flow Assessment Based on Vector Bioimpedance Measurements


We have a tendency to present a sturdy vector bioimpedance measurement system for longitudinal knee joint health assessment, capable of acquiring high resolution static (slowly varying over the course of hours to days) and dynamic (rapidly varying on the order of milli-seconds) bioresistance and bioreactance signals. Occupying an area of seventy eight×90 mm2 and consuming 0.25 W when supplied with ±5 V, the front-finish achieves a dynamic range of 345 Ω and noise floor of 0.018 mΩrms (resistive) and 0.05five mΩrms (reactive) among a bandwidth of Hz. A microcontroller permits real-time calibration to attenuate errors thanks to environmental variability (e.g., temperature) that may be experienced outside of lab environments, and allows information storage on a micro secure digital card. The acquired signals are then processed using customized physiology-driven algorithms to extract musculoskeletal (edema) and cardiovascular (local blood volume pulse) features from the knee joint. During a feasibility study, we found statistically vital differences between the injured and contralateral static knee impedance measures for two subjects with recent unilateral knee injury compared to seven controls. Specifically, the impedance was lower for the injured knees, supporting the physiological expectations for increased edema and damaged cell membranes. In a second feasibility study, we tend to demonstrate the sensitivity of the dynamic impedance measures with a cold-pressor test, with a 20 mΩ decrease within the pulsatile resistance associated with increased downstream peripheral vascular resistance. The proposed system can serve as a foundation for future efforts aimed toward quantifying joint health status continuously throughout normal everyday life.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Robust Modulation of PWM-Based Multi-Level Perpendicular Magnetic Recording for Conventional Media - 2018ABSTRACT:During this letter, we propose a sturdy 3-ary modulation for a pulse width modulation (PWM)-based
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)
PROJECT TITLE :Robust Chance Constrained Power Allocation Scheme for Multiple Target Localization in Colocated MIMO Radar System - 2018ABSTRACT:Taking into consideration the probabilistic uncertainty on the target radar cross
PROJECT TITLE :A Robust Parallel Algorithm for Combinatorial Compressed Sensing - 2018ABSTRACT:It was shown in previous work that a vector x E R n with at most k
PROJECT TITLE :Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model - 2018ABSTRACT:Low-light image enhancement ways based on classic Retinex model try to govern the estimated illumination and to project it

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry