Robust H∞ Network Observer-Based Attack-Tolerant Path Tracking Control of Autonomous Ground Vehicle


Under the influence of external disturbance, measurement noise, and actuator/sensor attack signals, a robust $H infty $ network observer-based attack-tolerant path tracking control design is proposed for the autonomous ground vehicle (AGV) in this study. In the beginning, a more realistic AGV system is utilized in order to describe the interaction between the longitudinal speed, the lateral speed, and the yaw rate. The information from the local AGV is sent to the remote control center via wireless channel and is based on Controller Area Network (CAN). The remote control center can then calculate the control command based on the information it has received. In order to prevent the actuator/sensor attack signal from becoming corrupted as a result of an insecure CAN, two novel smoothed signal models have been developed to describe these attack signals. These models have been embedded within the AGV dynamics system as an augmented system. After that, the conventional Luenberger-type observer of the augmented system is able to simultaneously estimate these attack signals along with the AGV system state. A robust $H infty $ network observer-based attack-tolerant path tracking controller is constructed by making use of estimated state and attack signals. The goal of this construction is to attenuate the effect of unknown disturbance on the energy of path tracking error and eliminate the influence of attack signals. The design conditions of a robust $H infty $ network observer-based attack-tolerant path tracking control design for an automated guided vehicle (AGV) are derived in terms of a set of nonlinear difference inequalities with the assistance of a convex Lyapunov function. The Takagi-Sugeno fuzzy interpolation method is applied to approximate the nonlinear AGV system, and the design can be simplified to a set of LMIs, each of which can be easily solved by using the LMI TOOLBOX in MATLAB. This helps to reduce the amount of difficulty involved in solving these nonlinear difference inequalities. A simulation example of an AGV performing a double lane change task within CAN is given in order to illustrate the design procedure and validate the effectiveness of the proposed design method in comparison to the conventional steering control method.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Robust Fuzzy Learning for Partially Overlapping Channels Allocation in UAV Communication Networks ABSTRACT: The emerging cellular-enabled unmanned aerial vehicle (UAV) communication paradigm poses significant challenges
PROJECT TITLE : Server-Aided Fine-Grained Access Control Mechanism with Robust Revocation in Cloud Computing ABSTRACT: In a wide variety of cloud computing applications, attribute based encryption, also known as ABE, makes it
PROJECT TITLE : Robust Localization System using Vector Combination in Wireless Sensor Networks ABSTRACT: In this paper, we propose a localization system that is based on vectors and that takes into account both distance and
PROJECT TITLE : Robust Variational Learning for Multiclass Kernel Models With Stein Refinement ABSTRACT: The ability of kernel-based models to generalize well is impressive, but the vast majority of them, including the SVM, are
PROJECT TITLE : Robust Rank-Constrained Sparse Learning: A Graph-Based Framework for Single View and Multiview Clustering ABSTRACT: Graph-based clustering is an approach that seeks to partition data in accordance with a similarity

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry