In this paper, we propose a robust initialization of a Jordan network with a recurrent constrained learning (RIJNRCL) algorithm for multilayered recurrent neural networks (RNNs). This novel algorithm is based on the constrained learning concept of the Jordan network with a recurrent sensitivity and weight convergence analysis, which is used to obtain a tradeoff between the training and testing errors. In addition to using classical techniques for the adaptive learning rate and the adaptive dead zone, RIJNRCL employs a recurrent constrained parameter matrix to switch off excessive contributions from the hidden layer neurons based on weight convergence and stability conditions of the multilayered RNNs. It is well known that a good response from the hidden layer neurons and proper initialization play a dominant role in avoiding local minima in multilayered RNNs. The new RIJNRCL algorithm solves the twin problems of weight initialization and selection of the hidden layer neurons via a novel recurrent sensitivity ratio analysis. We provide the detailed steps for using RIJNRCL in a few benchmark time-series prediction problems and show that the proposed algorithm achieves superior generalization performance.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition ABSTRACT: For face recognition applications, we offer a Group-Sparse Representation-based technique (GSR-FR). A non-convex
PROJECT TITLE : Online Subspace Learning from Gradient Orientations for Robust Image Alignment ABSTRACT: Robust and effective picture alignment remains a difficult task due to the size and complexity of images as well as fluctuations
PROJECT TITLE : Robust Semantic Template Matching Using a Superpixel Region Binary Descriptor ABSTRACT: To compare the similarity between a template picture and a scene image, low-level image parameters like pixel intensity and
PROJECT TITLE :Robust Modulation of PWM-Based Multi-Level Perpendicular Magnetic Recording for Conventional Media - 2018ABSTRACT:During this letter, we propose a sturdy 3-ary modulation for a pulse width modulation (PWM)-based
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry