Robust Image Coding Based Upon Compressive Sensing


Multiple description coding (MDC) is one of the widely used mechanisms to combat packet-loss in non-feedback systems. However, the number of descriptions in the existing MDC schemes is very small (typically 2). With the number of descriptions increasing, the coding complexity increases drastically and many decoders would be required. In this paper, the compressive sensing (CS) principles are studied and an alternative coding paradigm with a number of descriptions is proposed based upon CS for high packet loss transmission. Two-dimentional discrete wavelet transform (DWT) is applied for sparse representation. Unlike the typical wavelet coders (e.g., JPEG 2000), DWT coefficients here are not directly encoded, but re-sampled towards equal importance of information instead. At the decoder side, by fully exploiting the intra-scale and inter-scale correlation of multiscale DWT, two different CS recovery algorithms are developed for the low-frequency subband and high-frequency subbands, respectively. The recovery quality only depends on the number of received CS measurements (not on which of the measurements that are received). Experimental results show that the proposed CS-based codec is much more robust against lossy channels, while achieving higher rate-distortion (R-D) performance compared with conventional wavelet-based MDC methods and relevant existing CS-based coding schemes.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Accurate and Robust Video Saliency Detection via Self-Paced Diffusion ABSTRACT: In order to estimate video saliency in the short term, traditional video saliency detection algorithms usually follow the common
PROJECT TITLE : Robust Lane Detection from Continuous Driving ScenesUsing Deep Neural Networks ABSTRACT: For autonomous vehicles and sophisticated driver assistance systems, lane recognition in driving scenes is a critical element.
PROJECT TITLE : Robust Unsupervised Multi-view Feature Learning with Dynamic Graph ABSTRACT: By modeling the affinity associations with a graph to lower the dimension, graph-based multi-view feature learning algorithms learn a
PROJECT TITLE : A Spatially Constrained Probabilistic Model for Robust Image Segmentation ABSTRACT: In probabilistic model based segmentation, the hidden Markov random field (HMRF) is used to describe the class label distribution
PROJECT TITLE : An Adaptive and Robust Edge Detection Method Based on Edge Proportion Statistics ABSTRACT: One of the most important preprocessing steps for high-level tasks in the field of image analysis and computer vision is

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry