Robust Image Coding Based Upon Compressive Sensing


Multiple description coding (MDC) is one of the widely used mechanisms to combat packet-loss in non-feedback systems. However, the number of descriptions in the existing MDC schemes is very small (typically 2). With the number of descriptions increasing, the coding complexity increases drastically and many decoders would be required. In this paper, the compressive sensing (CS) principles are studied and an alternative coding paradigm with a number of descriptions is proposed based upon CS for high packet loss transmission. Two-dimentional discrete wavelet transform (DWT) is applied for sparse representation. Unlike the typical wavelet coders (e.g., JPEG 2000), DWT coefficients here are not directly encoded, but re-sampled towards equal importance of information instead. At the decoder side, by fully exploiting the intra-scale and inter-scale correlation of multiscale DWT, two different CS recovery algorithms are developed for the low-frequency subband and high-frequency subbands, respectively. The recovery quality only depends on the number of received CS measurements (not on which of the measurements that are received). Experimental results show that the proposed CS-based codec is much more robust against lossy channels, while achieving higher rate-distortion (R-D) performance compared with conventional wavelet-based MDC methods and relevant existing CS-based coding schemes.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition ABSTRACT: For face recognition applications, we offer a Group-Sparse Representation-based technique (GSR-FR). A non-convex
PROJECT TITLE : Online Subspace Learning from Gradient Orientations for Robust Image Alignment ABSTRACT: Robust and effective picture alignment remains a difficult task due to the size and complexity of images as well as fluctuations
PROJECT TITLE : Robust Semantic Template Matching Using a Superpixel Region Binary Descriptor ABSTRACT: To compare the similarity between a template picture and a scene image, low-level image parameters like pixel intensity and
PROJECT TITLE :Robust Modulation of PWM-Based Multi-Level Perpendicular Magnetic Recording for Conventional Media - 2018ABSTRACT:During this letter, we propose a sturdy 3-ary modulation for a pulse width modulation (PWM)-based
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry