ABSTRACT:

Finite mixture model based on the Student's-t distribution, which is heavily tailed and more robust than Gaussian, has recently received great attention for image segmentation. A new finite Student's-t mixture model (SMM) is proposed in this paper. Existing models do not explicitly incorporate the spatial relationships between pixels. First, our model exploits Dirichlet distribution and Dirichlet law to incorporate the local spatial constrains in an image. Secondly, we directly deal with the Student's-t distribution in order to estimate the model parameters, whereas, the Student's-t distributions in previous models are represented as an infinite mixture of scaled Gaussians that lead to an increase in complexity. Finally, instead of using expectation maximization (EM) algorithm, the proposed method adopts the gradient method to minimize the higher bound on the data negative log-likelihood and to optimize the parameters. The proposed model is successfully compared to the state-of-the-art finite mixture models. Numerical experiments are presented where the proposed model is tested on various simulated and real medical images.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Robust Fuzzy Learning for Partially Overlapping Channels Allocation in UAV Communication Networks ABSTRACT: The emerging cellular-enabled unmanned aerial vehicle (UAV) communication paradigm poses significant challenges
PROJECT TITLE : Server-Aided Fine-Grained Access Control Mechanism with Robust Revocation in Cloud Computing ABSTRACT: In a wide variety of cloud computing applications, attribute based encryption, also known as ABE, makes it
PROJECT TITLE : Robust H∞ Network Observer-Based Attack-Tolerant Path Tracking Control of Autonomous Ground Vehicle ABSTRACT: Under the influence of external disturbance, measurement noise, and actuator/sensor attack signals,
PROJECT TITLE : Robust Localization System using Vector Combination in Wireless Sensor Networks ABSTRACT: In this paper, we propose a localization system that is based on vectors and that takes into account both distance and
PROJECT TITLE : Robust Variational Learning for Multiclass Kernel Models With Stein Refinement ABSTRACT: The ability of kernel-based models to generalize well is impressive, but the vast majority of them, including the SVM, are

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry