PROJECT TITLE :

Low-Power ECG-Based Processor for Predicting Ventricular Arrhythmia - 2016

ABSTRACT:

This paper presents the look of a absolutely integrated electrocardiogram (ECG) signal processor (ESP) for the prediction of ventricular arrhythmia using a unique set of ECG features and a naive Bayes classifier. Real-time and adaptive techniques for the detection and the delineation of the P-QRS-T waves were investigated to extract the fiducial points. Those techniques are robust to any variations within the ECG signal with high sensitivity and precision. 2 databases of the center signal recordings from the MIT PhysioNet and also the American Heart Association were used as a validation set to guage the performance of the processor. Based on application-specified integrated circuit (ASIC) simulation results, the general classification accuracy was found to be eighty six% on the out-of-sample validation data with three-s window size. The design of the proposed ESP was implemented using 65-nm CMOS process. It occupied zero.112-mm2 space and consumed a pair of.seventy eight-µW power at an operating frequency of ten kHz and from an operating voltage of one V. It's value mentioning that the proposed ESP is the primary ASIC implementation of an ECG-based processor that's used for the prediction of ventricular arrhythmia up to three h before the onset.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Dynamically Updatable Ternary Segmented Aging Bloom Filter for OpenFlow-Compliant Low-Power Packet Processing - 2018ABSTRACT:OpenFlow, the most protocol for software-outlined networking, requires large-sized rule
PROJECT TITLE :A Low-Power High-Speed Comparator for Precise Applications - 2018ABSTRACT:A coffee-power comparator is presented. pMOS transistors are used at the input of the preamplifier of the comparator furthermore as the latch
PROJECT TITLE :Low-power Implementation of Mitchell's Approximate Logarithmic Multiplication for Convolutional Neural Networks - 2018ABSTRACT:This paper proposes an occasional-power implementation of the approximate logarithmic
PROJECT TITLE :Low-Power Approximate Multipliers Using Encoded Partial Products and Approximate Compressors - 2018ABSTRACT:Approximate computing has been thought of to boost the accuracy-performance tradeoff in error-tolerant
PROJECT TITLE :Vector Processing-Aware Advanced Clock-Gating Techniques for Low-Power Fused Multiply-Add - 2018ABSTRACT:The need for power potency is driving a rethink of style selections in processor architectures. Whereas vector

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry