ABSTRACT:

This paper proposes a control strategy for a single-stage, three-phase, photovoltaic (PV) system that is connected to a distribution network. The control is based on an inner current-control loop and an outer DC-link voltage regulator. The current-control mechanism decouples the PV system dynamics from those of the network and the loads. The DC-link voltage-control scheme enables control and maximization of the real power output. Proper feedforward actions are proposed for the current-control loop to make its dynamics independent of those of the rest of the system. Further, a feedforward compensation mechanism is proposed for the DC-link voltage-control loop, to make the PV system dynamics immune to the PV array nonlinear characteristic. This, in turn, permits the design and optimization of the PV system controllers for a wide range of operating conditions. A modal/sensitivity analysis is also conducted on a linearized model of the overall system, to characterize dynamic properties of the system, to evaluate robustness of the controllers, and to identify the nature of interactions between the PV system and the network/loads. The results of the modal analysis confirm that under the proposed control strategy, dynamics of the PV system are decoupled from those of the distribution network and, therefore, the PV system does not destabilize the distribution network. It is also shown that the PV system dynamics are not influenced by those of the network (i.e., the PV system maintains its stability and dynamic properties despite major variations in the line length, line X/R ratio, load type, and load distance from the PV system).


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Server-Aided Fine-Grained Access Control Mechanism with Robust Revocation in Cloud Computing ABSTRACT: In a wide variety of cloud computing applications, attribute based encryption, also known as ABE, makes it
PROJECT TITLE : Lightweight and Expressive Fine-grained Access Control for Healthcare Internet-of-Things ABSTRACT: The Internet of Things in Healthcare is a new paradigm that enables embedded devices to monitor patients' vital
PROJECT TITLE : Robust H∞ Network Observer-Based Attack-Tolerant Path Tracking Control of Autonomous Ground Vehicle ABSTRACT: Under the influence of external disturbance, measurement noise, and actuator/sensor attack signals,
PROJECT TITLE : Priority and Traffic-aware Contention-based Medium Access Control Scheme for Multi-event Wireless Sensor Networks ABSTRACT: The growing use of the Internet of Things presents new challenges, one of which is
PROJECT TITLE : The Effects of Vehicle-to-Infrastructure Communication Reliability on Performance of Signalized Intersection Traffic Control ABSTRACT: Communications between vehicles and roadside infrastructure can give an

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry