PROJECT TITLE :

Joint Sparse Representation for Robust Multimodal Biometrics Recognition (2014)

ABSTRACT :

Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : CANet Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading ABSTRACT: One in three people who are working-age and have diabetes will go blind due to diabetic retinopathy
PROJECT TITLE : Depth Restoration From RGB-D Data via Joint Adaptive Regularization and Thresholding on Manifolds ABSTRACT: By integrating the properties of local and non-local manifolds that offer low-dimensional parameterizations
PROJECT TITLE : Depth Super-Resolution via Joint Color-Guided Internal and External Regularizations ABSTRACT: Many real-world applications make heavy use of depth information. In practise, however, depth maps tend to have a lower
PROJECT TITLE : Graph-based Joint Dequantization and Contrast Enhancement of Poorly Lit JPEG Images ABSTRACT: The lossy compression of JPEG images results in images with low contrast and coarse quantization artefacts in low-light
PROJECT TITLE : Graph-Regularized Locality-Constrained Joint Dictionary and Residual Learning for Face Sketch Synthesis ABSTRACT: For digital entertainment and police enforcement, face sketch synthesis is a critical issue It's

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry