Chemical mechanical planarization (CMP) process has been widely used in the semiconductor manufacturing industry for realizing highly polished (surface roughness Ra ~1 nm ) and planar [WIWNU ~ 1%, thickness variation standard deviation ~3 nm] surfaces of an in-process wafer. In CMP, accurate and timely decisions for end-point detection (EPD) are extremely important to enable the process to effectively respond to demand variations and disruptions. In this paper, we apply nonlinear sequential Bayesian analysis and decision theory to establish a quantitative relationship that connects the features (inputs) extracted from on-line wireless vibration sensor signals with the process performance measures, such as material removal (outputs) for EPD in copper CMP process. A case study with actual CMP data is provided to demonstrate the effectiveness of the present approach. Note to practitioners. The semiconductor industry widely uses CMP process for realizing highly polished planar surfaces on inter-level dielectrics and metallic interconnects in the fabrication of integrated circuits. Accurate and timely detection of the end-point (EPD) of the CMP process is critical to prevent over-polishing or under-polishing of wafer surfaces, and thus meet the wafer yield requirements under growing demands on wafer density and performance. An EPD system uses information from in-process sensors and/or inspection instruments to facilitate decisions on when to stop the polishing process, and adjust process settings for optimal performance. However, the issue of developing cost-effective sensors, and addressing the uncertainty in the sensor information remains a challenge. We have developed an EPD system based on deriving and sequentially updating a cost-function using the uncertain information from wireless MEMS vibration sensors mounted on a CMP apparatus. Decisions on EPD are made based on optimizing the updated cost function at every time-step. Our experimental investigations suggest th-
at the sensor information can be effectively used for implementing EPD, and it can minimize the costs of over-polishing and under-polishing of wafers during CMP process. As part of future work, we are investigating the robustness of the EPD system to different forms of uncertainty in the sensor information, and much wider configurations of sensors and CMP setups.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A New Simulation Modeling for Nonlinear Current Control in Single Phase Grid Connected PV System ABSTRACT: Nonlinear current control schemes for single-phase grid-connected PV systems yielded better outcomes
PROJECT TITLE :Sensitive and Nonlinear Far-Field RF Energy Harvesting in Wireless Communications - 2018ABSTRACT:This Project studies each restricted sensitivity and nonlinearity of far field RF energy harvesting observed truly
PROJECT TITLE :Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data - 2018ABSTRACT:Machine learning strategies are used to get complex nonlinear relationships in biological and medical data. But, refined
PROJECT TITLE :Nonlinear Control of a Bidirectional Power Converter for Connecting Batteries in DC Micro grids - 2017ABSTRACT:This paper is concentrated on the control of a dc-dc bidirectional power converter for interfacing batteries
PROJECT TITLE :Nonlinear Control of Variable Speed Wind Turbines Via Fuzzy Techniques - 2017ABSTRACT:During this paper, a fuzzy logic controller is proposed to satisfy the objective of maximum power extraction primarily based

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry