Theoretical and Experimental Study on the Intracavity Optical Parametric Oscillator Pumped in a Raman Laser


A rate-equation-based model is established to describe the behavior of an intracavity optical parametric oscillator (OPO) pumped in an actively -switched Raman laser system. The intracavity photon densities and the initial population inversion density are assumed to be Gaussian distribution. These coupled rate equations are solved numerically. In the experiment, a laser diode end-pumped acousto-optically -switched KTP-OPO pumped by a Nd:YAG/ Raman laser is demonstrated. The output characteristics are studied carefully. And the experimental results about the average output power agree with the numerical solutions.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : On Oblivious Neighbor Discovery in Distributed Wireless Networks With Directional Antennas: Theoretical Foundation and Algorithm Design - 2017 ABSTRACT: Neighbor discovery, one in all the foremost elementary
PROJECT TITLE : Spectral Ensemble Clustering via Weighted K-means: Theoretical and Practical Evidence - 2017 ABSTRACT: As a promising approach for heterogeneous data analytics, consensus clustering has attracted increasing
PROJECT TITLE : Theoretical analysis of penalized Maximumlikelihood patlak parametric image Reconstruction in dynamic pet for lesion detection - 2016 ABSTRACT: Detecting cancerous lesions may be a major clinical application
PROJECT TITLE :Theoretical and experimental analyses of a hybrid excitation synchronous generator with integrated brushless excitationABSTRACT:This paper proposes a completely unique integrated brushless excitation method (IBEM)
PROJECT TITLE :Theoretical and Experimental Research on a Novel Small Tunable PCM System in Staggered Double Vane TWTABSTRACT:In this paper, a novel little tunable periodic cusped magnet (NSTPCM) system is proposed for the aim

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry