In this paper, a data-driven predictive controller is designed for the start-up process of vehicles with automated manual transmissions (AMTs). It is obtained directly from the input-output data of a driveline simulation model constructed by the commercial software AMESim. In order to obtain offset-free control for the reference input, the predictor equation is gained with incremental inputs and outputs. Because of the physical characteristics, the input and output constraints are considered explicitly in the problem formulation. The contradictory requirements of less friction losses and less driveline shock are included in the objective function. The designed controller is tested under nominal conditions and changed conditions. The simulation results show that, during the start-up process, the AMT clutch with the proposed controller works very well, and the process meets the control objectives: fast clutch lockup time, small friction losses, and the preservation of driver comfort, i.e., smooth acceleration of the vehicle. At the same time, the closed-loop system has the ability to reject uncertainties, such as the vehicle mass and road grade.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Compromised Controller Design for Current Sharing and Voltage Regulation in DC Microgrid ABSTRACT: It is easy to see how voltage controller tuning provides a clear and intuitive tradeoff between the opposing
PROJECT TITLE : Design of Power Decoupling Strategy for Single-Phase Grid-Connected Inverter Under Non-Ideal Power Grid ABSTRACT: Single-phase inverters require large electrolytic capacitors to decouple the dc bus from the
PROJECT TITLE : Design and Implementation of a Variable Synthetic Inertia Controller for Wind Turbine Generators ABSTRACT: The rising use of Renewable Energy Sources (RES) and converter-connected power generation is reducing
PROJECT TITLE : Design and Development of MATLAB Based Three Phase Converter for Unbalanced AC Source ABSTRACT: The primary goal of this project is to build a control circuit with components in the zero sequence, although
PROJECT TITLE : Design of a Sliding-Mode-Controlled SEPIC ABSTRACT: This paper describes how to create a sliding-mode controller for photovoltaic (PV) systems that tracks the maximum power point. However, it is applicable

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry