ABSTRACT:

In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Dynamic, Fine-Grained Data Plane Monitoring With Monocle - 2018ABSTRACT:Ensuring network reliability is important for satisfying service-level objectives. However, diagnosing network anomalies during a timely fashion
PROJECT TITLE :Robust, Efficient Depth Reconstruction with Hierarchical Confidence-Based Matching - 2017ABSTRACT:In recent years, taking photos and capturing videos with mobile devices became increasingly standard. Emerging applications
PROJECT TITLE :Data-Driven Control for Interlinked AC/DC Micro grids Via Model-Free Adaptive Control and Dual-Droop Control - 2017ABSTRACT:This paper investigates the coordinated power sharing problems of interlinked ac/dc microgrids.
PROJECT TITLE : Data-Driven Faulty Node Detection Scheme for Wireless Sensor Networks - 2017 ABSTRACT: During this paper, a faulty node detection theme with a hybrid algorithm using a Markov chain model that performs collective
PROJECT TITLE : Data-driven Answer Selection in Community QA Systems - 2017 ABSTRACT: Finding similar questions from historical archives has been applied to question answering, with well theoretical underpinnings and nice practical

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry