ABSTRACT:

This work applies a three-dimensional lattice Boltzmann method (LBM), to solve the Pennes bio-heat equation (BHE), in order to predict the temperature distribution in a spherical tissue, with blood perfusion, metabolism and magnetic nanoparticles (MNPs) heat sources, during magnetic fluid hyperthermia (MFH). So, heat dissipation of MNPs under an alternating magnetic field has been studied and effect of different factors such as induction and frequency of magnetic field and volume fraction of MNPs has been investigated. Then, effect of MNPs dispersion on temperature distribution inside tumor and its surrounding healthy tissue has been shown. Also, effect of blood perfusion, thermal conductivity of tumor, frequency and amplitude of magnetic field on temperature distribution has been explained. Results show that the LBM has a good accuracy to solve the bio-heat transfer problems.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Combined Experimental and Numerical Method for Loss Separation in Permanent-Magnet Brushless MachinesABSTRACT:Permanent-magnet synchronous machines are a high-potency motion solution. As the potency bar is raised,
PROJECT TITLE :Leveraged Neighborhood Restructuring in Cultural Algorithms for Solving Real-World Numerical Optimization ProblemsABSTRACT:Several researchers have developed population-based techniques to unravel numerical optimization
PROJECT TITLE :Numerical simulation on molecular displacement and DC breakdown of LDPEABSTRACT:It is generally known that the dc breakdown strength of low density polyethylene (LDPE) decreases with because the thickness and temperature
PROJECT TITLE :A Wideband Microwave Exposure Setup for Suspended Cells Cultures: Numerical and Experimental EM CharacterizationABSTRACT:An in vitro exposure setup developed to reveal suspended cells in Petri dishes on a giant
PROJECT TITLE :Experimental Study of Numerical Optimization for 3-D Microstructuring Using DMD-Based Grayscale LithographyABSTRACT:Digital micromirror device (DMD)-based grayscale lithography is a promising tool for 3D photolithography

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry