PROJECT TITLE :

Energy-Efficient Approximate Multiplier Design using Bit Significance-Driven Logic Compression - 2017

ABSTRACT:

Approximate arithmetic has recently emerged as a promising paradigm for several imprecision-tolerant applications. It will supply substantial reductions in circuit complexity, delay and energy consumption by relaxing accuracy needs. In this paper, we propose a novel energy-efficient approximate multiplier design using a significance-driven logic compression (SDLC) approach. Fundamental to this approach is an algorithmic and configurable lossy compression of the partial product rows based on their progressive bit significance. This is followed by the commutative remapping of the ensuing product terms to scale back the number of product rows. As such, the complexity of the multiplier in terms of logic cell counts and lengths of important methods is drastically reduced. A variety of multipliers with totally different bit-widths (four-bit to 128-bit) are designed in SystemVerilog and synthesized using Synopsys Style Compiler. Post-synthesis experiments showed that up to an order of magnitude energy savings, and reductions of sixty fivepercent in essential delay and virtually forty fivepercent in silicon space will be achieved for a 128-bit multiplier compared to an accurate equivalent. These gains are achieved with low accuracy losses estimated at less than 0.00071 mean relative error. Additionally, we demonstrate the energy-accuracy trade-offs for various degrees of compression, achieved through configurable logic clustering. In evaluating the effectiveness of our approach, a case study image processing application showed up to 68.3% energy reduction with negligible losses in image quality expressed as peak signal-to-noise ratio (PSNR).


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Energy-Efficient Transponder Configuration for FMF-Based Elastic Optical Networks - 2018ABSTRACT:We propose an energy-efficient procedure for transponder configuration in few-mode fiber-based elastic optical networks
PROJECT TITLE :Energy-Efficient Defensive Strategy Against Hybrid SSDF/Eavesdropping Attacks Over Nakagami- m Channels - 2018ABSTRACT:Throughout cooperative spectrum sensing (CSS) in cognitive radio networks, malicious users
PROJECT TITLE :Energy-Efficient D2D Communications Underlaying NOMA-Based Networks With Energy Harvesting - 2018ABSTRACT:This letter investigates the resource allocation downside in device-to-device (D2D) communications underlaying
PROJECT TITLE :Super-Modular Game-Based User Scheduling and Power Allocation for Energy-Efficient NOMA Network - 2018ABSTRACT:In this Project, we tend to contemplate a single cell downlink non-orthogonal multiple access (NOMA)
PROJECT TITLE :Exploiting Non-Causal CPU-State Information for Energy-Efficient Mobile Cooperative Computing - 2018ABSTRACT:Scavenging the idling computation resources at the large variety of mobile devices, ranging from tiny

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry