Critical Path Analysis and Low Complexity Implementation of the LMS Adaptive Algorithm - 2014


This project presents a precise analysis of the critical path of the least-mean-square (LMS) adaptive filter for deriving its architectures for high-speed and low-complexity implementation. It is shown that the direct-form LMS adaptive filter has nearly the same critical path as its transpose-form counterpart, but provides much faster convergence and lower register complexity. From the critical-path evaluation, it is further shown that no pipelining is required for implementing a direct-form LMS adaptive filter for most practical cases, and can be realized with a very small adaptation delay in cases where a very high sampling rate is required. Based on these findings, this project proposes three structures of the LMS adaptive filter: (i) Design 1 having no adaptation delays, (ii) Design 2 with only one adaptation delay, and (iii) Design 3 with two adaptation delays. Design 1 involves the minimum area and the minimum energy per sample (EPS). The best of existing direct-form structures requires 80.4% more area and 41.9% more EPS compared to Design 1. Designs 2 and 3 involve slightly more EPS than the Design 1 but offer nearly twice and thrice the MUF at a cost of 55.0% and 60.6% more area, respectively.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Cost-Optimal Caching for D2D Networks With User Mobility: Modeling, Analysis, and Computational Approaches - 2018ABSTRACT:Caching well-liked files at the user equipments (UEs) provides an efficient way to alleviate
PROJECT TITLE :SieveQ: A Layered BFT Protection System for Critical Services - 2018ABSTRACT:Firewalls play a crucial role in assuring the protection of nowadays's critical infrastructures, forming a initial line of defense by
PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :A Single and Adjacent Error Correction Code for Fast Decoding of Critical Bits - 2018ABSTRACT:Several systems have essential bits which should be decoded at high speeds; for instance, flags to mark the start and
PROJECT TITLE :Low Complexity and Critical Path based VLSI Architecture for LMS Adaptive Filter using Distributed Arithmetic - 2017ABSTRACT:This paper presents a new architecture for distributed arithmetic (DA) based Least Mean

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry