A Distributed Fault-Tolerant Topology Control Algorithm for Heterogeneous Wireless Sensor Networks - 2015/p>


This paper introduces a distributed fault-tolerant topology control algorithm, called the Disjoint Path Vector (DPV), for heterogeneous wireless sensor networks composed of a large number of sensor nodes with limited energy and computing capability and several supernodes with unlimited energy resources. The DPV algorithm addresses the k-degree Anycast Topology Control problem where the main objective is to assign each sensor's transmission range such that each has at least k-vertex-disjoint paths to supernodes and the total power consumption is minimum. The resulting topologies are tolerant to k-1 node failures in the worst case. We prove the correctness of our approach by showing that topologies generated by DPV are guaranteed to satisfy k-vertex supernode connectivity. Our simulations show that the DPV algorithm achieves up to 4-fold reduction in total transmission power required in the network and 2-fold reduction in maximum transmission power required in a node compared to existing solutions.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Robust Empirical Bayesian Reconstruction of Distributed Sources for Electromagnetic Brain Imaging ABSTRACT: Electromagnetic brain imaging uses non-invasive recordings of magnetic fields and electric potentials
PROJECT TITLE : A Three-port Converter Based Distributed DC Grid-connected PV System with Autonomous Output Voltage-Sharing Control ABSTRACT: Using hybrid-connected three-port converters (TPCs), a distributed dc grid linked
PROJECT TITLE : Fast Distributed Reactive Power Control for Voltage Regulation in Distribution Networks ABSTRACT: Distributed energy resources' reactive power can be optimally regulated to regulate voltage in distribution
PROJECT TITLE : Critical Load Restoration using Distributed Energy Resources for Resilient Power Distribution System ABSTRACT: In the face of extreme weather events, the ageing and obsolete power distribution systems have
PROJECT TITLE : Distributed Stochastic Reserve Scheduling in AC Power Systems With Uncertain Generation ABSTRACT: Distributed consensus and the alternating direction method of multipliers are used to implement multi-area stochastic

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry