PROJECT TITLE:

Adaptive Algorithms for Diagnosing Large-Scale Failures in Computer Networks - 2015

ABSTRACT:

We propose a greedy algorithm, Cluster-MAX-COVERAGE (CMC), to efficiently diagnose large-scale clustered failures. We primarily address the challenge of determining faults with incomplete symptoms. CMC makes novel use of both positive and negative symptoms to output a hypothesis list with a low number of false negatives and false positives quickly. CMC requires reports from about half as many nodes as other existing algorithms to determine failures with 100 percent accuracy. Moreover, CMC accomplishes this gain significantly faster (sometimes by two orders of magnitude) than an algorithm that matches its accuracy. When there are fewer positive and negative symptoms at a reporting node, CMC performs much better than existing algorithms. We also propose an adaptive algorithm called Adaptive-MAX-COVERAGE (AMC) that performs efficiently during both independent and clustered failures. During a series of failures that include both independent and clustered, AMC results in a reduced number of false negatives and false positives.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :An Improved Adaptive P&O Technique for TwoStage Grid Interfaced SPVECSABSTRACT:This work presents an improved perturb and observe with adaptive perturbation size (IAP&O) algorithm for harnessing most power from
PROJECT TITLE :Capacity Maximizing Adaptive Power Splitting Protocol for Cooperative Energy Harvesting Communication Systems - 2018ABSTRACT:In this letter, we have a tendency to propose a unique power splitting (PS) protocol
PROJECT TITLE :Adaptive Contention Window Control Scheme in Wireless Ad Hoc Networks - 2018ABSTRACT:This competition mechanism of the IEEE 802.11 distributed coordination function (DCF) is understood to own some drawbacks, e.g.,
PROJECT TITLE :Adaptive Beamforming in an Impulsive Noise Environment Using Matrix Completion - 2018ABSTRACT:In this letter, a brand new approach is presented for sturdy adaptive beamforming in an impulsive noise environment.
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry