Power Allocation for Statistical QoS Provisioning in Opportunistic Multi-Relay DF Cognitive Networks - 2013


In this letter, we propose a power allocation scheme for statistical quality-of-service (QoS) provisioning in multi-relay decode-and-forward (DF) cognitive networks (CN). By considering the direct link between the source and destination, the CN first chooses the transmission mode (direct transmission or relay transmission) based on the channel state information. Then, according to the determined transmission mode, efficient power allocation will be performed under the given QoS requirement, the average transmit and interference power constraints as well as the peak interference constraint. Our proposed power allocation scheme indicates that, in order to achieve the maximum throughput, at most two relays can be involved for the transmission. Simulation results show that our proposed scheme outperforms the max-min criterion and equal power allocation policy.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Optimal Phase Shift Control to Minimize Reactive Power for a Dual Active Bridge DC-DC Converter ABSTRACT: Under non-unity voltage gain conditions, modulating the phase shift ratios in a dual active bridge (DAB)
PROJECT TITLE : Modular Parallel Multi-Inverter System for High-Power Inductive Power Transfer ABSTRACT: An inverter-based parallel multi-inverter system is proposed to deliver high and extendable power levels for inductive
PROJECT TITLE : Experimental Evaluation of Capacitors for Power Buffering in Single-Phase Power Converters ABSTRACT: An energy buffer is needed for single-phase inverters and rectifiers to absorb twice-line frequency power
PROJECT TITLE : Vector Current Control Derived from Direct Power Control for Grid-Connected Inverters ABSTRACT: Three-phase voltage source inverter (VSI) vector current control is proposed in the synchronous rotating frame
PROJECT TITLE : Design of Power Decoupling Strategy for Single-Phase Grid-Connected Inverter Under Non-Ideal Power Grid ABSTRACT: Single-phase inverters require large electrolytic capacitors to decouple the dc bus from the

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry