Depth Restoration From RGB-D Data via Joint Adaptive Regularization and Thresholding on Manifolds


By integrating the properties of local and non-local manifolds that offer low-dimensional parameterizations of local and non-local geometry of depth maps, we have developed a novel depth restoration algorithm using RGB-D data. Manifold regularisation is presented to enhance smoothing along the manifold structure by first defining a local manifold model that favours local nearby relationships of pixels in depth. It is also possible to exploit the patch-based manifold's non-local properties, such as its self-similar structures, to develop highly data-adaptive orthogonal bases to extract extended visual patterns. A manifold thresholding operator in 3D adaptive orthogonal spectral bases (eigenvectors of the discrete Laplacian of local and non-local manifolds) is further defined to keep only low graph frequencies for depth map restoration. Lastly, we present an efficient alternating direction approach of multipliers optimization framework that combines adaptive manifold regularisation and thresholding to solve the inverse problem of depth map recovery... Our strategy outperforms the current state-of-the-art in both objective and subjective quality evaluations, according to the findings of experiments.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Joint Transceiver Beamforming Design for Hybrid Full-Duplex and Half-Duplex Ad-Hoc Networks ABSTRACT: In this paper, we propose a joint transceiver beamforming design method for hybrid full-duplex (FD) and half-duplex
PROJECT TITLE : Joint Optimization of MapReduce Scheduling and Network Policy in Hierarchical Data Centers ABSTRACT: The use of mapreduce frameworks to analyze ever-increasing volumes of data is expected to continue increasing
PROJECT TITLE : Joint Computation Offloading and Bandwidth Assignment in Cloud-Assisted Edge Computing ABSTRACT: The process of augmenting the computational capabilities of mobile devices with limited resources by offloading computation
PROJECT TITLE : Message-Passing-Based Joint User Association and Time Allocation for Wireless Powered Communication Networks ABSTRACT: A joint design of user association and time allocation for wirelessly powered communication
PROJECT TITLE : Joint detection and matching of feature points in multimodal images ABSTRACT: In this work, we propose a novel architecture for Convolutional Neural Networks (CNNs) for the joint detection and matching of feature

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry