ABSTRACT:

Recently, 3D stacking has been proposed to alleviate the memory bandwidth limitation arising in chip multiprocessors (CMPs). As the number of integrated cores in the chip increases the access to external memory becomes the bottleneck, thus demanding larger memory amounts inside the chip. The most accepted solution to implement vertical links between stacked dies is by using Through Silicon Vias (TSVs). However, TSVs are exposed to misalignment and random defects compromising the yield of the manufactured 3D chip. A common solution to this problem is by over-provisioning, thus impacting on area and cost. In this paper, we propose a fault-tolerant vertical link design. With its adoption, fault-tolerant vertical links can be implemented in a 3D chip design at low cost without the need of adding redundant TSVs (no over-provision). Preliminary results are very promising as the fault-tolerant vertical link design increases switch area only by 6.69% while the achieved interconnect yield tends to 100%.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :On Practical Construction of Quality Fault-Tolerant Virtual Backbone in Homogeneous Wireless Networks - 2018ABSTRACT:Over years, many efforts are made for the problem of constructing quality fault-tolerant virtual
PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :Design, Evaluation and Application of Approximate High-Radix Dividers - 2018ABSTRACT:Approximate high radix dividers (HR-AXDs) are proposed and investigated during this paper. High-radix division is reviewed and
PROJECT TITLE :Design of Defect and Fault-Tolerant Nonvolatile Spintronic Flip-Flops - 2017ABSTRACT:With technology down scaling, static power has become one in every of the most important challenges in a system on chip. Normally
PROJECT TITLE :A Fault-Tolerant T-Type Multilevel Inverter Topology with Increased Overload Capability and Soft-Switching Characteristics - 2017ABSTRACT:The performance of a unique 3-part four-leg fault-tolerant T-sort inverter

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry