New optimal solution to disjoint set K-coverage for lifetime extension in wireless sensor networks


Lifetime extension is a fundamental concern in wireless sensor networks (WSNs) owing to the limited energy of each sensor. Random and dense deployment of sensors in many applications impose some coverage redundancy in WSNs, which motivates methods to avoid such redundancy for extending the overall lifetime of the networks. An effective method for this purpose is to divide the sensors into a maximum number of disjoint groups called covers, each of which can cover all targets, so that only one cover is active at any time. The problem of obtaining the maximum number of covers has been proved to be NP-hard. In this study, an optimal method is proposed for the problem. The proposed method is based on the transformation of the problem into the well-known Boolean satisfiability (SAT) problem. Simulation results indicate that the proposed method is superior to existing genetic (GAMDSC) and heuristic (MCMCC) methods. Moreover, as an optimal algorithm, it guarantees obtaining an optimum solution, whereas the existing (meta)heuristic algorithms do not. In addition, we extend the proposed method to the K-coverage problem, where each target is supposed to be covered by at least K number of nodes.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis ABSTRACT: Incorporating spatial and temporal patterns present in facial behavior should substantially improve facial
PROJECT TITLE : Development and Assessment of a New Global Mammographic Image Feature Analysis Scheme to Predict Likelihood of Malignant Cases ABSTRACT: Researchers in this project hope to create and test a new computer-aided
PROJECT TITLE : A New Multi-Atlas Registration Framework for Multimodal Pathological Images Using Conventional Monomodal Normal Atlases ABSTRACT: For tasks like ROI segmentation, anatomical landmark recognition, and so on, information
PROJECT TITLE : A Novel Scheme Based on the Diffusion to Edge Detection ABSTRACT: This paper presents a new method for detecting edges based on the physical rule of diffusion. Data-based approaches, such as deep neural networks,
PROJECT TITLE : FastDeRain A Novel Video Rain Streak Removal Method Using Directional Gradient Priors ABSTRACT: The elimination of rain streaks from outdoor vision systems is an important problem that has lately been studied extensively.

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry