ABSTRACT:

A distributed system's allocation of software components to hardware nodes (i.e., deployment architecture) can have a significant impact on its quality of service (QoS). For a given system, there may be many deployment architectures that provide the same functionality, but with different levels of QoS. The parameters that influence the quality of a system's deployment architecture are often not known before the system's initial deployment and may change at runtime. This means that redeployment of the software system may be necessary to improve the system's QoS properties. This paper presents and evaluates a framework aimed at finding the most appropriate deployment architecture for a distributed software system with respect to multiple, possibly conflicting QoS dimensions. The framework supports formal modeling of the problem and provides a set of tailorable algorithms for improving a system's deployment. We have realized the framework on top of a visual deployment architecture modeling and analysis environment. The framework has been evaluated for precision and execution-time complexity on a large number of simulated distributed system scenarios, as well as in the context of two third-party families of distributed applications.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Blockchain and AI-empowered Healthcare Insurance Fraud Detection An Analysis, Architecture, and Future Prospects ABSTRACT: As the prevalence of health problems continues to rise, having health insurance has
PROJECT TITLE :OpenFunction: An Extensible Data Plane Abstraction Protocol for Platform-Independent Software-Defined Middleboxes - 2018ABSTRACT:The information plane abstraction is central to software-outlined networking (SDN).
PROJECT TITLE :Switching Extensible FIR Filter Bank for Adaptive Horizon State Estimation With ApplicationABSTRACT:Horizon size is an important parameter that affects the estimation performance of finite impulse response (FIR)
PROJECT TITLE :5G Multi-RAT LTE-WiFi Ultra-Dense Small Cells: Performance Dynamics, Architecture, and TrendsABSTRACT:The ongoing densification of little cells yields an unprecedented paradigm shift in user expertise and network
PROJECT TITLE:Internet of Things in the 5G Era: Enablers, Architecture, and Business ModelsABSTRACT:The IoT paradigm holds the promise to revolutionize the manner we live and work by means that of a wealth of latest services,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry