PROJECT TITLE :

Exploiting the Essential Assumptions of Analogy-Based Effort Estimation

ABSTRACT:

Background: There are too many design options for software effort estimators. How can we best explore them all? Aim: We seek aspects on general principles of effort estimation that can guide the design of effort estimators. Method: We identified the essential assumption of analogy-based effort estimation, i.e., the immediate neighbors of a project offer stable conclusions about that project. We test that assumption by generating a binary tree of clusters of effort data and comparing the variance of supertrees versus smaller subtrees. Results: For 10 data sets (from Coc81, Nasa93, Desharnais, Albrecht, ISBSG, and data from Turkish companies), we found: 1) The estimation variance of cluster subtrees is usually larger than that of cluster supertrees; 2) if analogy is restricted to the cluster trees with lower variance, then effort estimates have a significantly lower error (measured using MRE, AR, and Pred(25) with a Wilcoxon test, 95 percent confidence, compared to nearest neighbor methods that use neighborhoods of a fixed size). Conclusion: Estimation by analogy can be significantly improved by a dynamic selection of nearest neighbors, using only the project data from regions with small variance.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Exploiting Non-Causal CPU-State Information for Energy-Efficient Mobile Cooperative Computing - 2018ABSTRACT:Scavenging the idling computation resources at the large variety of mobile devices, ranging from tiny
PROJECT TITLE :Estimation of Broadband Multiuser Millimeter Wave Massive MIMO-OFDM Channels by Exploiting Their Sparse Structure - 2018ABSTRACT:In millimeter wave (mm-wave) huge multiple-input multiple-output (MIMO) systems, acquiring
PROJECT TITLE :MPiLoc: Self-Calibrating Multi-Floor Indoor Localization Exploiting Participatory Sensing - 2018ABSTRACT:Whereas location is one of the most important context info in mobile and pervasive computing, giant-scale
PROJECT TITLE :Automatic Identification of Driver’s Smartphone Exploiting Common Vehicle-Riding Actions - 2018ABSTRACT:Texting or browsing the net on a smartphone while driving, referred to as distracted driving, considerably
PROJECT TITLE :Exploiting Transistor-Level Reconfiguration to Optimize Combinational circuits - 2017ABSTRACT:Silicon nanowire reconfigurable field impact transistors (SiNW RFETs) abolish the physical separation of n-sort and p-type

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry