Fault Localization for Dynamic Web Applications


In recent years, there has been significant interest in fault-localization techniques that are based on statistical analysis of program constructs executed by passing and failing executions. This paper shows how the Tarantula, Ochiai, and Jaccard fault-localization algorithms can be enhanced to localize faults effectively in web applications written in PHP by using an extended domain for conditional and function-call statements and by using a source mapping. We also propose several novel test-generation strategies that are geared toward producing test suites that have maximal fault-localization effectiveness. We implemented various fault-localization techniques and test-generation strategies in Apollo, and evaluated them on several open-source PHP applications. Our results indicate that a variant of the Ochiai algorithm that includes all our enhancements localizes 87.8 percent of all faults to within 1 percent of all executed statements, compared to only 37.4 percent for the unenhanced Ochiai algorithm. We also found that all the test-generation strategies that we considered are capable of generating test suites with maximal fault-localization effectiveness when given an infinite time budget for test generation. However, on average, a directed strategy based on path-constraint similarity achieves this maximal effectiveness after generating only 6.5 tests, compared to 46.8 tests for an undirected test-generation strategy.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Multi-Switches Fault Diagnosis Based on Small Low Frequency Data for Voltage-Source Inverters of PMSM Drives ABSTRACT: Using small low-frequency data for inverter failure diagnosis of permanent magnet synchronous
PROJECT TITLE : Fast Fault Diagnosis Method for Hall Sensors in Brushless DC Motor Drives ABSTRACT: Because of their simplicity and low cost, brushless direct current motors with Hall sensors are frequently employed in a wide
PROJECT TITLE : Fault Current Estimation in Multi-Terminal HVdc Grids Considering MMC Control ABSTRACT: For multi-terminal HVdc protection systems, DC faults are crucial events, and knowing the critical fault time is essential
PROJECT TITLE : Bridge-Type Solid-State Fault Current Limiter Based on ACDC Reactor ABSTRACT: Based on a single series reactor, this study presents a novel bridge-type solid-state fault current limiter (BSSFCL). There are
PROJECT TITLE : Fault Detection and Protection of Induction Motors Using Sensors ABSTRACT: Because an induction motor (IM) is used extensively in industry as an actuator, its protection against probable faults, such as overvoltage,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry