GA Guided Cluster Based Fuzzy Decision Tree for Reactive Ion Etching Modeling: A Data Mining Approach


There are various Data Mining techniques that are frequently used for the mining of vital patterns embedded within bulk data. These techniques include neural network, regression analysis, rough set theory, Bayesian network, decision trees, and so on. In this research, a novel Data Mining technique, genetically guided cluster based fuzzy decision tree (GCFDT), is introduced for the mining task. In order to test the efficacy of GCFDT, it is employed for building the predictive process models of reactive ion etching (RIE) with the aid of optical emission spectroscopy (OES) signals. This model endeavors to predict the wafer surface conditions for the new incoming set of process parameters. OES is an efficient tool for monitoring plasma emission intensity. In contrast with the C-fuzzy decision tree where granules are devolved through fuzzy clustering here, granulation is practised through genetically guided fuzzy clustering. The growth of the tree is governed by expanding the node having highest diversity. The results obtained by employing CGFDT in RIE process modeling reveal that it dominates both the traditional C-fuzzy decision trees and C4.5 decision trees in terms of both the accuracy and compactness.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Deep Guided Learning for Fast Multi-Exposure Image Fusion ABSTRACT: MEF-Net is a rapid multi-exposure image fusion (MEF) approach for static image sequences of adjustable spatial resolution and exposure number
PROJECT TITLE : Dynamic Scene Deblurring by Depth Guided Model ABSTRACT: Object movement, depth fluctuation, and camera shake are the most common causes of dynamic scene blur. For the most part, present approaches use picture
PROJECT TITLE : Weighted Guided Image Filtering With Steering Kernel ABSTRACT: The guided image filter (GIF) is prone to halo artefacts at the margins because of its local characteristic. As a workaround, a weighted guided image
PROJECT TITLE : A Dynamic-Shape-Prior Guided Snake Model With Application in Visually Tracking Dense Cell Populations ABSTRACT: Here, we present the DSP snake model, which we believe will help improve the overall stability of
PROJECT TITLE : Deep Color Guided Coarse-to-Fine Convolutional Network Cascade for Depth Image Super-Resolution ABSTRACT: The task of super-resolution of depth images is both significant and difficult. In order to deal with this

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry