PROJECT TITLE :

Improved Output Power of InGaN LEDs by Lateral Overgrowth on Si-Implanted n-GaN Surface to Form Air Gaps

ABSTRACT:

In this paper, air gaps were embedded in the n-GaN layer to improve light output power of InGaN-based light-emitting diodes (LEDs). Si ions $({rm Si}^{+28})$ were implanted on the n-GaN surface, causing a lattice constant disorder. Therefore, the GaN grown on the Si-implanted areas had a lower growth rate than the implantation-free regions. Without using a dielectric thin film, lateral epitaxial overgrowth technique was used to form air gaps above the implanted regions and below the active layers of InGaN LEDs. We proposed the growth mechanisms of GaN layer on the Si-implanted GaN templates and characterized the InGaN-based LEDs with embedded air gaps array. With a 20-mA current injection, experimental results indicate that light output power (LOP) of the proposed LEDs was enhanced by 36%, compared with those of the conventional LEDs. This enhancement can be attributed to the light scattering at the textured GaN/gap interfaces to increase the effective light escape cone in the LEDs. Based on ray tracing simulation, if the height and the width of bottom of gaps were increased to 3 $mu{rm m}$, the Lop could be enhanced over 70%.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Using Improved Conditional Generative Adversarial Networks to Detect Social Bots on Twitter ABSTRACT: The detection and elimination of dangerous social bots in social media has piqued commercial and academic interest.
PROJECT TITLE : Boosting Structure Consistency for Multispectral and Multimodal Image Registration ABSTRACT: In computer vision and computational photography, multispectral imaging is essential. It is vital to align spectral band
PROJECT TITLE : Deep Neural Networks Improve Radiologists Performance in Breast Cancer Screening ABSTRACT: To classify mammograms for breast cancer screening, we developed a deep convolutional neural network that was trained and
PROJECT TITLE : A Novel Control Scheme for Enhancing the Transient Performance of an Islanded Hybrid AC-DC Microgrid ABSTRACT: In this research, we present an innovative supplementary feature for increasing the transient performance
PROJECT TITLE : An Improved Zero-Current-Switching Single-Phase Transformerless PV H6 Inverter with Switching Loss-Free ABSTRACT: An SLF concept for the first six switches H-bridge inverter (H6-I) architecture is presented

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry