Numerical Modeling of Holmium-Doped Fluoride Fiber Lasers


We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+-doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+-doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Modeling, Limits and Baseline of Voltage Interharmonics Generation in Andean Wind FarmsABSTRACT:The subsequent study focuses on the analysis of voltage interharmonics based mostly on power quality experimental information
PROJECT TITLE :Combined Experimental and Numerical Method for Loss Separation in Permanent-Magnet Brushless MachinesABSTRACT:Permanent-magnet synchronous machines are a high-potency motion solution. As the potency bar is raised,
PROJECT TITLE :Modeling, Measuring, and Compensating Color Weak VisionABSTRACT:We tend to use strategies from Riemann geometry to investigate transformations between the colour spaces of color-normal and color-weak observers.
PROJECT TITLE :Leveraged Neighborhood Restructuring in Cultural Algorithms for Solving Real-World Numerical Optimization ProblemsABSTRACT:Several researchers have developed population-based techniques to unravel numerical optimization
PROJECT TITLE :Numerical simulation on molecular displacement and DC breakdown of LDPEABSTRACT:It is generally known that the dc breakdown strength of low density polyethylene (LDPE) decreases with because the thickness and temperature

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry