This paper is reports an extension of our previous investigations on adding transparency to neural networks. We focus on a class of linear priors (LPs), such as symmetry, ranking list, boundary, monotonicity, etc., which represent either linear-equality or linear-inequality priors. A generalized constraint neural network-LPs (GCNN-LPs) model is studied. Unlike other existing modeling approaches, the GCNN-LP model exhibits its advantages. First, any LP is embedded by an explicitly structural mode, which may add a higher degree of transparency than using a pure algorithm mode. Second, a direct elimination and least squares approach is adopted to study the model, which produces better performances in both accuracy and computational cost over the Lagrange multiplier techniques in experiments. Specific attention is paid to both “hard (strictly satisfied)” and “soft (weakly satisfied)” constraints for regression problems. Numerical investigations are made on synthetic examples as well as on the real-world datasets. Simulation results demonstrate the effectiveness of the proposed modeling approach in comparison with other existing approaches.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Scaling Up Generalized Kernel Methods ABSTRACT: Over the course of the past two decades, kernel methods have enjoyed a great deal of success. During this era of big data, the collection of data has experienced
PROJECT TITLE : Enhancing Factorization Machines with Generalized Metric Learning ABSTRACT: The cold-start and data sparsity issues that plague recommender systems can be circumvented with the help of factorization machines (FMs),
PROJECT TITLE : Quantum Blockchain Based on Dimensional Lifting Generalized Gram-Schmidt Procedure ABSTRACT: The development of quantum computers compromises the integrity of classical blockchains, making it necessary either
PROJECT TITLE : Multinational License Plate Recognition Using Generalized Character Sequence Detection ABSTRACT: The computer vision community considers automatic license plate recognition (ALPR) to be a solved problem. However,
PROJECT TITLE : Generalized Bayesian Model Selection for Speckle on Remote Sensing Images ABSTRACT: Coherent summation of back-scattered waves and subsequent nonlinear envelope changes introduce speckle noise into both synthetic

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry