PROJECT TITLE :

Enhancing the Ride-Through Capability of DC-Link Voltage in NPC Multilevel Unified Power-Flow Controllers (2014)

ABSTRACT :

Multilevel converters are attractive for unified power-flow controller (UPFC) applications, due to their high-voltage and power capability. Among multilevel topologies, the three-level neutral-point-clamped (NPC) converter allows back-to-back connection as the UPFC shunt and series converters. Besides the pulsewidth-modulated (PWM) multilevel control schemes, UPFCs require constant dc-link voltage and balanced voltages in the NPC multilevel dc capacitors. This paper proposes three main contributions to increase the dc-link voltage steadiness of multilevel UPFCs under line faults: 1) decoupled active and reactive linear power controllers; 2) real-time PWM generation; and 3) double balancing of dc capacitor voltages. A case study using part of the Portuguese transmission network is presented. The results show the effectiveness of the real-time PWM generation and dc-link capacitor voltages balancing included in NPC series and shunt converters to keep the dc-link voltage steadiness under line faults, overall enhancing the UPFC ride-through capability.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Leveraging Deep Learning Techniques to Improve P300-Based Brain Computer Interfaces ABSTRACT: The Brain-Computer Interface, or BCI, is a technology that has matured to the point where it can successfully connect
PROJECT TITLE : GarNet++: Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss ABSTRACT: In this paper, we address the issue of static cloth draping on virtual human bodies using three-dimensional models. We present
PROJECT TITLE :Enhancing Fault Tolerance and Resource Utilization in Unidirectional Quorum-Based Cycle Routing - 2018ABSTRACT:Cycle-based optical network routing, whether or not using synchronous optical networking rings or p-cycles,
PROJECT TITLE :Enhancing Localization Scalability and Accuracy via Opportunistic Sensing - 2018ABSTRACT:Employing a mobile phone for fine-grained indoor localization remains an open drawback. Low-complexity approaches without
PROJECT TITLE :Enhancing Fundamental Energy Limits of Field-Coupled Nano computing Circuits - 2018ABSTRACT:Energy dissipation of future integrated systems, consisting of a myriad of devices, is a challenge that can't be solved

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry