PROJECT TITLE :

Design of Efficient Binary Comparators in Quantum-Dot Cellular Automata (2014)

ABSTRACT :

Quantum-dot cellular automata (QCA) are an attractive emerging technology suitable for the development of ultra-dense low-power high-performance digital circuits. Efficient solutions have recently been proposed for several arithmetic circuits, such as adders, multipliers, and comparators. Nevertheless, since the design of digital circuits in QCA still poses several challenges, novel implementation strategies and methodologies are highly desirable. This paper proposes a new design approach oriented to the implementation of binary comparators in QCA. New formulations of basic logic equations required to perform the comparison function are proposed. The new strategy has been exploited in the design of two different comparator architectures and for several operands word lengths. With respect to existing counterparts, the comparators proposed here exhibit significantly higher speed and reduced overall area.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :A Successive Optimization Approach to Pilot Design for Multi-Cell Massive MIMO Systems - 2018ABSTRACT:During this letter, we tend to introduce a completely unique pilot design approach that minimizes the entire
PROJECT TITLE :Spectrally Compatible Waveform Design for MIMO Radar in the Presence of Multiple Targets - 2018ABSTRACT:This Project investigates the matter of the spectrally compatible waveform style for multiple-input multiple-output
PROJECT TITLE :Relay Hybrid Precoding Design in Millimeter-Wave Massive MIMO Systems - 2018ABSTRACT:This Project investigates the relay hybrid precoding style in millimeter-wave massive multiple-input multiple-output systems.
PROJECT TITLE :Optimal Training Design for MIMO Systems With General Power Constraints - 2018ABSTRACT:Coaching design for general multiple-input multiple-output (MIMO) systems is investigated during this Project. Unlike previous
PROJECT TITLE :Optimal Filter Design for Signal Processing on Random Graphs: Accelerated Consensus - 2018ABSTRACT:In graph signal processing, filters arise from polynomials in shift matrices that respect the graph structure,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry