Designing Tunable Subthreshold Logic Circuits Using Adaptive Feedback Equalization - 2015


Ultralow-power subthreshold logic circuits are becoming prominent in embedded applications with limited energy budgets. Minimum energy consumption of digital logic circuits can be obtained by operating in the subthreshold regime. However, in this regime process variations can result in up to an order of magnitude variations in $I_{ON}/I_{OFF}$ ratios leading to timing errors, which can have a destructive effect on the functionality of the subthreshold circuits. These timing errors become more frequent in scaled technology nodes where process variations are highly prevalent. Therefore, mechanisms to mitigate these timing errors while minimizing the energy consumption are required. In this system, we propose a tunable adaptive feedback equalizer circuit that can be used with a sequential digital logic to mitigate the process variation effects and reduce the dominant leakage energy component in the subthreshold digital logic circuits. We also present detailed energy-performance models of the adaptive feedback equalizer circuit. As part of the modeling approach, we also develop an analytical methodology to estimate the equivalent resistance of MOSFET devices in subthreshold regime. For a 64-bit adder designed in 130 nm, our proposed approach can reduce the normalized variation of the critical path delay from 16.1% to 11.4% while reducing the energy-delay product by 25.83% at minimum energy supply voltage.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :A Tale of Two Visions: Designing a Decentralized Transactive Electric SystemABSTRACT:Conversations about distributed resources, the transactive grid, and the future of the electrical industry abound with terms like
PROJECT TITLE :Designing Efficient Index-Digit Algorithms for CUDA GPU ArchitecturesABSTRACT:Trendy graphics processing units (GPUs) provide very high computing power at comparatively low cost. Nevertheless, designing economical
PROJECT TITLE :Tunable, High-Q, Substrate-Integrated, Evanescent-Mode Cavity Bandpass-Bandstop Filter CascadeABSTRACT:A new single substrate-integrated bandpass-bandstop (BP-BS) filter cascade, implemented using high-Q, heavily-loaded,
PROJECT TITLE :Guest Editorial Special Issue on the 2015 IEEE International Instrumentation and Measurement Technology Conference Pisa, Italy, May 11–14, 2015ABSTRACT:The thirty second annual IEEE International Instrumentation
PROJECT TITLE :Designing Inverters’ Current Controllers With Resonance Frequencies CancellationABSTRACT:This paper presents an innovative and effective linear current regulator for grid-connected converters interfaced by an

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry