PROJECT TITLE :

Design and Implementation of Efficient Integrity Protection for Open Mobile Platforms - 2014

ABSTRACT:

The security of mobile devices such as cellular phones and smartphones has gained extensive attention due to their increasing usage in people's daily life. The problem is challenging as the computing environments of these devices have become more open and general-purpose while at the same time they have the constraints of performance and user experience. We propose and implement SEIP, a simple and efficient but yet effective solution for the integrity protection of real-world cellular phone platforms, which is motivated by the disadvantages of applying traditional integrity models on these performance and user experience constrained devices. The major security objective of SEIP is to protect trusted services and resources (e.g., those belonging to cellular service providers and device manufacturers) from third-party code. We propose a set of simple integrity protection rules based upon open mobile operating system environments and application behaviors. Our design leverages the unique features of mobile devices, such as service convergence and limited permissions of user installed applications, and easily identifies the borderline between trusted and untrusted domains on mobile platforms. Our approach, thus, significantly simplifies policy specifications while still achieves a high assurance of platform integrity. SEIP is deployed within a commercially available Linux-based smartphone and demonstrates that it can effectively prevent certain malware. The security policy of our implementation is less than 20 kB, and a performance study shows that it is lightweight.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :A Successive Optimization Approach to Pilot Design for Multi-Cell Massive MIMO Systems - 2018ABSTRACT:During this letter, we tend to introduce a completely unique pilot design approach that minimizes the entire
PROJECT TITLE :Spectrally Compatible Waveform Design for MIMO Radar in the Presence of Multiple Targets - 2018ABSTRACT:This Project investigates the matter of the spectrally compatible waveform style for multiple-input multiple-output
PROJECT TITLE :Relay Hybrid Precoding Design in Millimeter-Wave Massive MIMO Systems - 2018ABSTRACT:This Project investigates the relay hybrid precoding style in millimeter-wave massive multiple-input multiple-output systems.
PROJECT TITLE :Optimal Training Design for MIMO Systems With General Power Constraints - 2018ABSTRACT:Coaching design for general multiple-input multiple-output (MIMO) systems is investigated during this Project. Unlike previous
PROJECT TITLE :Optimal Filter Design for Signal Processing on Random Graphs: Accelerated Consensus - 2018ABSTRACT:In graph signal processing, filters arise from polynomials in shift matrices that respect the graph structure,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry