Fast Detection of Transformed Data Leaks - 2016


The leak of sensitive data on computer systems poses a heavy threat to organizational security. Statistics show that the shortage of proper encryption on files and Communications because of human errors is one of the leading causes of data loss. Organizations want tools to spot the exposure of sensitive information by screening the content in storage and transmission, i.e., to detect sensitive data being stored or transmitted in the clear. However, detecting the exposure of sensitive information is difficult because of data transformation in the content. Transformations (like insertion and deletion) end in highly unpredictable leak patterns. In this paper, we have a tendency to utilize sequence alignment techniques for detecting complex data-leak patterns. Our algorithm is designed for detecting long and inexact sensitive information patterns. This detection is paired with a comparable sampling algorithm, that allows one to check the similarity of two separately sampled sequences. Our system achieves sensible detection accuracy in recognizing remodeled leaks. We implement a parallelized version of our algorithms in graphics processing unit that achieves high analysis throughput. We tend to demonstrate the high multithreading scalability of our knowledge leak detection technique needed by a large organization.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Fast Globally Optimal Transmit Antenna Selection and Resource Allocation Scheme in mmWave D2D Networks ABSTRACT: The process of transmit antenna selection, abbreviated as TAS at base stations, has been the subject
PROJECT TITLE : Fast Multi-Criteria Service Selection for Multi-User Composite Applications ABSTRACT: Paradigms such as Software as a Service (SaaS) and Service-Based Systems (SBSs), which are becoming more prevalent as cloud
PROJECT TITLE : Traffic Prediction and Fast Uplink for Hidden Markov IoT Models ABSTRACT: In this work, we present a novel framework for the traffic prediction and fast uplink (FU) capabilities of Internet of Things (IoT) networks
PROJECT TITLE : A Multi-criteria Approach for Fast and Robust Representative Selection from Manifolds ABSTRACT: The problem of representative selection can be summed up as the challenge of selecting a small number of informative
PROJECT TITLE : Deadline-Aware Fast One-to-Many Bulk Transfers over Inter-Datacenter Networks ABSTRACT: An ever-increasing number of cloud services are being run on a global scale. In order to increase both the quality and

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry