PROJECT TITLE :

A Fusion Approach for Efficient Human Skin Detection - 2012

ABSTRACT:

A reliable human skin detection method that is adaptable to different human skin colors and illumination conditions is essential for better human skin segmentation. Even though different human skin-color detection solutions have been successfully applied, they are prone to false skin detection and are not able to cope with the variety of human skin colors across different ethnic. Moreover, existing methods require high computational cost. In this paper, we propose a novel human skin detection approach that combines a smoothed 2-D histogram and Gaussian model, for automatic human skin detection in color image(s). In our approach, an eye detector is used to refine the skin model for a specific person. The proposed approach reduces computational costs as no training is required, and it improves the accuracy of skin detection despite wide variation in ethnicity and illumination. To the best of our knowledge, this is the first method to employ fusion strategy for this purpose. Qualitative and quantitative results on three standard public datasets and a comparison with state-of-the-art methods have shown the effectiveness and robustness of the proposed approach.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : NCF: A Neural Context Fusion Approach to Raw Mobility Annotation ABSTRACT: Improving business intelligence in mobile environments requires a thorough comprehension of human mobility patterns on a point-of-interest
PROJECT TITLE : ESVSSE Enabling Efficient, Secure, Verifiable Searchable Symmetric Encryption ABSTRACT: It is believed that symmetric searchable encryption, also known as SSE, will solve the problem of privacy in data outsourcing
PROJECT TITLE : Small Low-Contrast Target Detection Data-Driven Spatiotemporal Feature Fusion and Implementation ABSTRACT: An essential and difficult task in the airspace is the detection of low-contrast targets that are relatively
PROJECT TITLE : A Multi-Stream Feature Fusion Approach for Traffic Prediction ABSTRACT: The ability to predict traffic flow that is both accurate and timely is essential for intelligent transportation systems (ITS). Recent
PROJECT TITLE : Deep Guided Learning for Fast Multi-Exposure Image Fusion ABSTRACT: MEF-Net is a rapid multi-exposure image fusion (MEF) approach for static image sequences of adjustable spatial resolution and exposure number

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry