PROJECT TITLE :

Segmentation and Sampling of Moving Object Trajectories Based on Representativeness - 2012

ABSTRACT:

Moving Object Databases (MOD), although ubiquitous, still call for methods that will be able to understand, search, analyze, and browse their spatiotemporal content. In this paper, we propose a method for trajectory segmentation and sampling based on the representativeness of the (sub)trajectories in the MOD. In order to find the most representative subtrajectories, the following methodology is proposed. First, a novel global voting algorithm is performed, based on local density and trajectory similarity information. This method is applied for each segment of the trajectory, forming a local trajectory descriptor that represents line segment representativeness. The sequence of this descriptor over a trajectory gives the voting signal of the trajectory, where high values correspond to the most representative parts. Then, a novel segmentation algorithm is applied on this signal that automatically estimates the number of partitions and the partition borders, identifying homogenous partitions concerning their representativeness. Finally, a sampling method over the resulting segments yields the most representative subtrajectories in the MOD. Our experimental results in synthetic and real MOD verify the effectiveness of the proposed scheme, also in comparison with other sampling techniques.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Systematic Clinical Evaluation of a Deep Learning Method for Medical Image Segmentation Radiosurgery Application ABSTRACT: We conduct an in-depth analysis of a Deep Learning model by using it to segment three-dimensional
PROJECT TITLE : Semantic Segmentation for Free Space and Lane Based on Grid-Based Interest Point Detection ABSTRACT: The field of autonomous driving and advanced driver assistance systems has seen a rise in the number of tasks
PROJECT TITLE : RAVIR A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis ABSTRACT: The vasculature of the retina offers crucial hints that can be used in the diagnosis and ongoing monitoring of
PROJECT TITLE : Key Points Estimation and Point Instance Segmentation Approach for Lane Detection ABSTRACT: Techniques of perception used in autonomous vehicles should be adaptable to the various environments they encounter.
PROJECT TITLE : Prior Guided Feature Enrichment Network for Few-Shot Segmentation ABSTRACT: Methods of semantic segmentation that have advanced to the state-of-the-art require a sufficient amount of labeled data to achieve good

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry