PROJECT TITLE :

Segmentation and Sampling of Moving Object Trajectories Based on Representativeness - 2012

ABSTRACT:

Moving Object Databases (MOD), although ubiquitous, still call for methods that will be able to understand, search, analyze, and browse their spatiotemporal content. In this paper, we propose a method for trajectory segmentation and sampling based on the representativeness of the (sub)trajectories in the MOD. In order to find the most representative subtrajectories, the following methodology is proposed. First, a novel global voting algorithm is performed, based on local density and trajectory similarity information. This method is applied for each segment of the trajectory, forming a local trajectory descriptor that represents line segment representativeness. The sequence of this descriptor over a trajectory gives the voting signal of the trajectory, where high values correspond to the most representative parts. Then, a novel segmentation algorithm is applied on this signal that automatically estimates the number of partitions and the partition borders, identifying homogenous partitions concerning their representativeness. Finally, a sampling method over the resulting segments yields the most representative subtrajectories in the MOD. Our experimental results in synthetic and real MOD verify the effectiveness of the proposed scheme, also in comparison with other sampling techniques.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : 3D APA-Net 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images ABSTRACT: Diagnostic and treatment of prostate illnesses, particularly cancer, rely heavily on accurate
PROJECT TITLE : A Multi-Organ Nucleus Segmentation Challenge ABSTRACT: The development and validation of visual biomarkers for new digital pathology datasets can considerably benefit from the use of generalised nucleus segmentation
PROJECT TITLE : A Spatially Constrained Probabilistic Model for Robust Image Segmentation ABSTRACT: In probabilistic model based segmentation, the hidden Markov random field (HMRF) is used to describe the class label distribution
PROJECT TITLE : Deep Neural Network Regression for Automated Retinal Layer Segmentation in Optical Coherence Tomography Images ABSTRACT: The quantification of layer information in early diagnosis of retinal disorders, the primary
PROJECT TITLE : Deep Retinal Image Segmentation With Regularization Under Geometric Priors ABSTRACT: Ophthalmology relies on retinal picture vessel segmentation as a critical diagnostic tool. Low contrast, fluctuating artery

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry