We consider several distributed collaborative key agreement and authentication protocols for dynamic peer groups. There are several important characteristics which make this problem different from traditional secure group Communication. They are: 1) distributed nature in which there is no centralized key server; 2) collaborative nature in which the group key is contributory (i.e., each group member will collaboratively contribute its part to the global group key); and 3) dynamic nature in which existing members may leave the group while new members may join. Instead of performing individual rekeying operations, i.e., recomputing the group key after every join or leave request, we discuss an interval-based approach of rekeying. We consider three interval-based distributed rekeying algorithms, or interval-based algorithms for short, for updating the group key: 1) the Rebuild algorithm; 2) the Batch algorithm; and 3) the Queue-batch algorithm. Performance of these three interval-based algorithms under different settings, such as different join and leave probabilities,is analyzed. We show that the interval-based algorithms significantly outperform the individual rekeying approach and that the Queue-batch algorithm performs the best among the three interval-based algorithms. More importantly, the Queue-batch algorithm can substantially reduce the computation and Communication workload in a highly dynamic environment. We further enhance the interval-based algorithms in two aspects: authentication and implementation. Authentication focuses on the security improvement, while implementation realizes the interval-based algorithms in real network settings. Our work provides a fundamental understanding about establishing a group key via a distributed and collaborative approach for a dynamic peer group.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Fully and Partially Distributed Incentive Mechanism for a Mobile Edge Computing Network ABSTRACT: Computing at the network's edge has emerged as a significant focus of recent networking research. The exponential
PROJECT TITLE : PGeoTopic A Distributed Solution for Mining Geographical Topic Models ABSTRACT: The mining of geo-tagged documents for topical regions and geographical topics is one application of geographical topic models. These
PROJECT TITLE : Fast and Secure Distributed Nonnegative Matrix Factorization ABSTRACT: The nonnegative matrix factorization (NMF) technique has been utilized effectively in a number of different data mining activities. Because
PROJECT TITLE : Energy-aware cloud workflow applications scheduling with geo-distributed data ABSTRACT: The cost of electricity shifts during the course of the day and varies from one geographic location to another. Workflow applications
PROJECT TITLE : Modeling and Verification of Symbolic Distributed Applications through an Intelligent Monitoring Agent ABSTRACT: Emerging paradigms for distributed computing, such as the Internet of Things (IoT), Ambient Intelligence,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry