In this paper, we learn explicit representations for dynamic shape manifolds of moving humans for the task of action recognition. We exploit locality preserving projections (LPP) for dimensionality reduction, leading to a low-dimensional embedding of human movements. Given a sequence of moving silhouettes associated to an action video, by LPP, we project them into a low-dimensional space to characterize the spatiotemporal property of the action, as well as to preserve much of the geometric structure. To match the embedded action trajectories, the median Hausdorff distance or normalized spatiotemporal correlation is used for similarity measures. Action classification is then achieved in a nearest-neighbor framework. To evaluate the proposed method, extensive experiments have been carried out on a recent dataset including ten actions performed by nine different subjects. The experimental results show that the proposed method is able to not only recognize human actions effectively, but also considerably tolerate some challenging conditions, e.g., partial occlusion, low-quality videos, changes in viewpoints, scales, and clothes; within-class variations caused by different subjects with different physical build; styles of motion; etc

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Robust Fuzzy Learning for Partially Overlapping Channels Allocation in UAV Communication Networks ABSTRACT: The emerging cellular-enabled unmanned aerial vehicle (UAV) communication paradigm poses significant challenges
PROJECT TITLE : Revenue-Optimal Auction For Resource Allocation in Wireless Virtualization: A Deep Learning Approach ABSTRACT: Virtualization of wireless networks has emerged as an essential component of future cellular networks.
PROJECT TITLE : Multi-hop Deflection Routing Algorithm Based on Reinforcement Learning for Energy-Harvesting Nanonetworks ABSTRACT: Nanonetworks are made up of nano-nodes that interact with one another, and the size of these nano-nodes
PROJECT TITLE : Memory-Aware Active Learning in Mobile Sensing Systems ABSTRACT: A novel active learning framework for activity recognition utilizing wearable sensors is presented here. When deciding which sensor data should be
PROJECT TITLE : Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing ABSTRACT: The term "vehicular edge computing" (VEC) refers to a potentially useful paradigm that is based on the Internet of vehicles

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry