We present a non-photorealistic algorithm for retargeting large images to small size displays, particularly on mobile devices. This method adapts large images so that important objects in the image are still recognizable when displayed at a lower target resolution. Existing image manipulation techniques such as cropping works well for images containing a single important object, and down-sampling works well for images containing low frequency information. However, when these techniques are automatically applied to images with multiple objects, the image quality degrades and important information may be lost. Our algorithm addresses the case of multiple important objects in an image. The retargeting algorithm segments an image into regions, identifies important regions, removes them, fills the resulting gaps, resizes the remaining image, and re-inserts the important regions. Our approach lies in constructing a topologically constrained epitome of an image based on a visual attention model that is both comprehensible and size varying, making the method suitable for display-critical applications.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Systematic Clinical Evaluation of a Deep Learning Method for Medical Image Segmentation Radiosurgery Application ABSTRACT: We conduct an in-depth analysis of a Deep Learning model by using it to segment three-dimensional
PROJECT TITLE : On Smart Gaze based Annotation of Histopathology Images for Training of Deep Convolutional Neural Networks ABSTRACT: To fully realize the potential of deep learning in histopathology applications, a bottleneck
PROJECT TITLE : Multi-Magnification Image Search in Digital Pathology ABSTRACT: This study proposes the use of multi-magnification image representation and investigates the effect that magnification has on content-based image
PROJECT TITLE : Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation ABSTRACT: The long-term goal of image restoration and manipulation is to acquire a solid understanding of image priors. Existing
PROJECT TITLE : Learning Deformable Image Registration from Optimization Perspective, Modules, Bilevel Training and Beyond ABSTRACT: The goal of conventional deformable registration methods is to solve an optimization model that

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry