PROJECT TITLE :

Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain (2014)

ABSTRACT :

This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-fold. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving the image inverse problem is formulated using JSM under a regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split Bregman-based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring, and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : An Analytical Approach for Soil and Land Classification System using Image Processing ABSTRACT: Land mapping and classification have piqued the interest of experts in recent decades for a variety of reasons.
PROJECT TITLE : Detection of Peach Disease Image Based on Asymptotic Non-Local Means and PCNN-IPELM ABSTRACT: This paper proposes a peach disease detection method based on the asymptotic non-local means (ANLM) image algorithm
PROJECT TITLE : 3D Neuron Reconstruction in Tangled Neuronal Image With Deep Networks ABSTRACT: Understanding how the brain works requires tracing or digital reconstruction of 3D neuron models. For the clean neuronal image with
PROJECT TITLE : A Biological Vision Inspired Framework for Image Enhancement in Poor Visibility Conditions ABSTRACT: For many computer vision applications, image augmentation is an essential pre-processing step, especially for
PROJECT TITLE : A Multi-Domain and Multi-Modal Representation Disentangler for Cross-Domain Image Manipulation and Classification ABSTRACT: Deep learning and computer vision have been focusing on the development of interpretable

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry