PROJECT TITLE:

Stochastic Decision Making for Adaptive Crowd sourcing in Medical Big-Data Platforms - 2015

ABSTRACT:

This paper proposes two novel algorithms for adaptive crowdsourcing in sixty-GHz medical imaging huge-information platforms, particularly, a max-weight scheduling algorithm for medical cloud platforms and a stochastic call-creating algorithm for distributed power-and-latency-aware dynamic buffer management in medical devices. In the first algorithm, medical cloud platforms perform a joint queue-backlog and rate-aware scheduling decisions for matching deployed access points (APs) and medical users where APs are eventually connected to medical clouds. In the second algorithm, every scheduled medical device computes the amounts of power allocation to upload its own medical data to medical big-data clouds with stochastic call creating considering joint energy-efficiency and buffer stability optimization. Through extensive simulations, the proposed algorithms are shown to achieve the required results.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Link Prediction Based on Stochastic Information Diffusion ABSTRACT: Link prediction (LP) in networks aims to determine future interactions among elements; it is an essential piece of machine learning software in
PROJECT TITLE : Dynamic Scheduling for Stochastic Edge-Cloud Computing Environments using A3C learning and Residual Recurrent Neural Networks ABSTRACT: The widespread adoption of applications that are based on the Internet
PROJECT TITLE : An Analysis of a Stochastic ON-OFF Queueing Mobility Model for Software-Defined Vehicle Networks ABSTRACT: Recently, we have been exposed to a number of newly developed software-defined paradigms of VANET in
PROJECT TITLE : A Stochastic Approach to Finding Densest Temporal Subgraphs in Dynamic Graphs ABSTRACT: Finding the densest lasting -subgraphs in large dynamic graphs, which takes into consideration the time duration of the
PROJECT TITLE : BayesFlow Learning Complex Stochastic Models With Invertible Neural Networks ABSTRACT: Estimating the parameters of mathematical models is a problem that arises frequently in virtually all subfields of the scientific

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry