PROJECT TITLE :

Fast Channel Zapping with Destination-Oriented Multicast for IP Video Delivery - 2013

ABSTRACT:

Channel zapping time is a critical quality of experience (QoE) metric for IP-based video delivery systems such as IPTV. An interesting zapping acceleration scheme based on time-shifted subchannels (TSS) was recently proposed, which can ensure a zapping delay bound as well as maintain the picture quality during zapping. However, the behaviors of the TSS-based scheme have not been fully studied yet. Furthermore, the existing TSS-based implementation adopts the traditional IP multicast, which is not scalable for a large-scale distributed system. Corresponding to such issues, this paper makes contributions in two aspects. First, we resort to theoretical analysis to understand the fundamental properties of the TSS-based service model. We show that there exists an optimal subchannel data rate which minimizes the redundant traffic transmitted over subchannels. Moreover, we reveal a start-up effect, where the existing operation pattern in the TSS-based model could violate the zapping delay bound. With a solution proposed to resolve the start-up effect, we rigorously prove that a zapping delay bound equal to the subchannel time shift is guaranteed by the updated TSS-based model. Second, we propose a destination-oriented-multicast (DOM) assisted zapping acceleration (DAZA) scheme for a scalable TSS-based implementation, where a subscriber can seamlessly migrate from a subchannel to the main channel after zapping without any control message exchange over the network. Moreover, the subchannel selection in DAZA is independent of the zapping request signaling delay, resulting in improved robustness and reduced messaging overhead in a distributed environment. We implement DAZA in ns-2 and multicast an MPEG-4 video stream over a practical network topology. Extensive simulation results are presented to demonstrate the validity of our analysis and DAZA scheme.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :In-Memory Stream Indexing of Massive and Fast Incoming Multimedia Content - 2018ABSTRACT:In this text, a media storm indexing mechanism is presented, where media storms are outlined as quick incoming batches. We
PROJECT TITLE :Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models - 2018ABSTRACT:The problem of low-rank matrix completion is taken into account in this Project. To use the underlying low-rank structure
PROJECT TITLE :A Fast Converging Channel Estimation Algorithm for Wireless Sensor Networks - 2018ABSTRACT:A group-membership affine projection algorithm is proposed which will estimate a complicated-valued channel matrix using
PROJECT TITLE :Fast Cell Discovery in mm-Wave 5G Networks with Context Information - 2018ABSTRACT:The exploitation of mm-wave bands is one amongst the key-enabler for 5G mobile radio networks. However, the introduction of mm-wave
PROJECT TITLE :Fast and Reliable Restoration Method of Virtual Resources on OpenStack - 2018ABSTRACT:We propose a quick and reliable restoration technique of virtual resources on OpenStack when physical servers or virtual machines

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry