PROJECT TITLE :

Fast Data Collection in Tree-Based Wireless Sensor Networks

ABSTRACT:

We investigate the following fundamental question-how fast can information be collected from a wireless sensor network organized as tree? To address this, we explore and evaluate a number of different techniques using realistic simulation models under the many-to-one Communication paradigm known as convergecast. We first consider time scheduling on a single frequency channel with the aim of minimizing the number of time slots required (schedule length) to complete a convergecast. Next, we combine scheduling with transmission power control to mitigate the effects of interference, and show that while power control helps in reducing the schedule length under a single frequency, scheduling transmissions using multiple frequencies is more efficient. We give lower bounds on the schedule length when interference is completely eliminated, and propose algorithms that achieve these bounds. We also evaluate the performance of various channel assignment methods and find empirically that for moderate size networks of about 100 nodes, the use of multifrequency scheduling can suffice to eliminate most of the interference. Then, the data collection rate no longer remains limited by interference but by the topology of the routing tree. To this end, we construct degree-constrained spanning trees and capacitated minimal spanning trees, and show significant improvement in scheduling performance over different deployment densities. Lastly, we evaluate the impact of different interference and channel models on the schedule length.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Deep Guided Learning for Fast Multi-Exposure Image Fusion ABSTRACT: MEF-Net is a rapid multi-exposure image fusion (MEF) approach for static image sequences of adjustable spatial resolution and exposure number
PROJECT TITLE : Fast Adaptive Bilateral Filtering ABSTRACT: For edge-preserving smoothing, a fixed Gaussian range kernel and a spatial kernel are employed in the bilateral filter. It is possible to generalise this filter by allowing
PROJECT TITLE : Fast High-Dimensional Bilateral and Nonlocal Means Filtering ABSTRACT: Currently available rapid methods for bilateral and nonlocal means filtering are limited to grayscale images. High-dimensional data, such as
PROJECT TITLE : On-Device Scalable Image-Based Localization via Prioritized Cascade Search and Fast One-Many RANSAC ABSTRACT: We describe a complete on-device solution for large-scale image-based urban localisation. Compact image
PROJECT TITLE : Fast Fault Diagnosis Method for Hall Sensors in Brushless DC Motor Drives ABSTRACT: Because of their simplicity and low cost, brushless direct current motors with Hall sensors are frequently employed in a wide

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry