Wireless and Pyroelectric Sensory Fusion System for Indoor HumanRobot Localization and Monitoring - 2012


An indoor localization and monitoring system for robots and people is an important issue in robotics research. Although several monitoring systems are currently under development by previous investigators, these issues remain significant difficulties. For instance, the pyroelectric IR (PIR) system provides less accurate information of human location and is restricted when there are multiple targets. Furthermore, the RF localization system is constrained by its limited accuracy. In this study, we propose an indoor localization and monitoring system based on a wireless and PIR (WPIR) sensory fusion system. We develop a sensor-network-based localization method called the WPIR inference algorithm. This algorithm determines the fused position from both the PIR localization system and RF signal localization system, which utilize the received signal strength propagation model. We have developed and experimentally demonstrated a WPIR sensory fusion system, which can be successfully applied in localizing multiple targets based on two robots and two people in this study. With an accurate localization mechanism for the indoor environment, the provision of appropriate services for people can be realized.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Underwater Ultrasonic Wireless Power Transfer: A Battery-Less Platform for the Internet of Underwater Things ABSTRACT: New maritime applications, including scientific research and business ventures, will be made
PROJECT TITLE : Revenue-Optimal Auction For Resource Allocation in Wireless Virtualization: A Deep Learning Approach ABSTRACT: Virtualization of wireless networks has emerged as an essential component of future cellular networks.
PROJECT TITLE : In-band Secret-Free Pairing for COTS Wireless Devices ABSTRACT: Numerous Internet of Things devices are missing the user interfaces (screens, keyboards) required to enter passwords or change the default passwords.
PROJECT TITLE : Identity-Based Attack Detection and Classification Utilizing Reciprocal RSS Variations in Mobile Wireless Networks ABSTRACT: One of the most dangerous dangers that wireless networks face is that of identity-based
PROJECT TITLE : Lyapunov Optimization Based Trade-Off Policy for Mobile Cloud Offloading in Heterogeneous Wireless Networks ABSTRACT: Mobile cloud computing, also known as MCC, is gaining popularity as a means of enhancing the

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry