Sell Your Projects | My Account | Careers | This email address is being protected from spambots. You need JavaScript enabled to view it. | Call: +91 9573777164

Low-Rank Physical Model Recovery From Low-Rank Signal Approximation - 2017

1 1 1 1 1 Rating 5.00 (1 Vote)

PROJECT TITLE :

Low-Rank Physical Model Recovery From Low-Rank Signal Approximation - 2017

ABSTRACT:

This work presents a mathematical approach for recovering a physical model from a low-rank approximation of measured information obtained via the singular price decomposition (SVD). The general kind of a low-rank physical model of the data is typically known, so the presented approach learns the correct rotation and scaling matrices from the singular vectors and singular values of the SVD in order to recover the low-rank physical model of the information from the SVD approximation. By recovering the low-rank physical model, it becomes attainable to use specific knowledge of the model to extract meaningful data for the physical application being studied. This work is useful for processing wide-band electromagnetic induction data-the motivating application.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


Low-Rank Physical Model Recovery From Low-Rank Signal Approximation - 2017 - 5.0 out of 5 based on 1 vote

Project EnquiryLatest Ready Available Academic Live Projects in affordable prices

Included complete project review wise documentation with project explanation videos and Much More...