Low-Rank Matrix Recovery From Noisy, Quantized, and Erroneous Measurements - 2018


This Project proposes a Communication-reduced, cyber-resilient, and data-preserved data collection framework. Random noise and quantization are applied to the measurements before transmission to compress information and enhance data privacy. Leveraging the low-rank property of the information, we develop novel methods to recover the original information from quantized measurements even when partial measurements are corrupted. The information recovery is achieved through solving a constrained most chance estimation drawback. The recovery error is proven to be order-wise optimal and decays in the same order as that of the state-of-the-art methodology when there's no corruption. The data accuracy is thus maintained while the information privacy is enhanced. A proximal algorithm with convergence guarantee is proposed to resolve the nonconvex drawback. The analyses are extended to situations when some measurements are lost, or when multiple copies of noisy, quantized measurements are sent for every information purpose. A replacement application of this framework for data privacy in Power Systems is discussed. Experiments on artificial knowledge and real synchrophasor data in Power Systems demonstrate the effectiveness of our technique.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Low-Rank Quaternion Approximation for Color Image Processing ABSTRACT: Grayscale image processing has seen tremendous success with methods based on low-rank matrix approximation (LRMA). By default, LRMA restores
PROJECT TITLE : Reconstruction of Binary Shapes From Blurred Images via Hankel-Structured Low-Rank Matrix Recovery ABSTRACT: We are increasingly dealing with discrete-domain samples of analogue images due to the popularity of
PROJECT TITLE : High-quality Image Restoration Using Low-Rank Patch Regularization and Global Structure Sparsity ABSTRACT: In recent years, picture restoration has improved significantly thanks to techniques based on nonlocal
PROJECT TITLE : Matrix Completion Based on Non-Convex Low-Rank Approximation ABSTRACT: NNM, a convex relaxation for rank minimization (RM), is a widely used tool for matrix completion and relevant low-rank approximation issues
PROJECT TITLE :Large-Scale Kernel-Based Feature Extraction via Low-Rank Subspace Tracking on a Budget - 2018ABSTRACT:Kernel-primarily based ways get pleasure from powerful generalization capabilities in learning a selection of

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry