ABSTRACT:

Subband adaptive filtering (SAF) techniques play a prominent role in designing active noise control (ANC) systems. They reduce the computational complexity of ANC algorithms, particularly, when the acoustic noise is a broadband signal and the system models have long impulse responses. In the commonly used uniform-discrete Fourier transform (DFT)-modulated (UDFTM) filter banks, increasing the number of subbands decreases the computational burden but can introduce excessive distortion, degrading performance of the ANC system. In this paper, we propose a new UDFTM-based adaptive subband filtering method that alleviates the degrading effects of the delay and side-lobe distortion introduced by the prototype filter on the system performance. The delay in filter bank is reduced by prototype filter design and the side-lobe distortion is compensated for by oversampling and appropriate stacking of subband weights. Experimental results show the improvement of performance and computational complexity of the proposed method in comparison to two commonly used subband and block adaptive filtering algorithms.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis ABSTRACT: Incorporating spatial and temporal patterns present in facial behavior should substantially improve facial
PROJECT TITLE : Development and Assessment of a New Global Mammographic Image Feature Analysis Scheme to Predict Likelihood of Malignant Cases ABSTRACT: Researchers in this project hope to create and test a new computer-aided
PROJECT TITLE : A New Multi-Atlas Registration Framework for Multimodal Pathological Images Using Conventional Monomodal Normal Atlases ABSTRACT: For tasks like ROI segmentation, anatomical landmark recognition, and so on, information
PROJECT TITLE : A Novel Scheme Based on the Diffusion to Edge Detection ABSTRACT: This paper presents a new method for detecting edges based on the physical rule of diffusion. Data-based approaches, such as deep neural networks,
PROJECT TITLE : FastDeRain A Novel Video Rain Streak Removal Method Using Directional Gradient Priors ABSTRACT: The elimination of rain streaks from outdoor vision systems is an important problem that has lately been studied extensively.

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry