Video Tracking Using Learned Hierarchical Features - 2015


During this paper, we propose an approach to be told hierarchical options for visual object tracking. Initial, we tend to offline learn features robust to various motion patterns from auxiliary video sequences. The hierarchical features are learned via a two-layer convolutional neural network. Embedding the temporal slowness constraint in the stacked architecture makes the learned options strong to sophisticated motion transformations, that is vital for visual object tracking. Then, given a target video sequence, we propose a website adaptation module to on-line adapt the pre-learned features in keeping with the particular target object. The adaptation is conducted in both layers of the deep feature learning module so as to incorporate appearance info of the particular target object. Therefore, the learned hierarchical options will be strong to both complicated motion transformations and look changes of target objects. We have a tendency to integrate our feature learning algorithm into three tracking strategies. Experimental results demonstrate that vital improvement will be achieved using our learned hierarchical options, especially on video sequences with sophisticated motion transformations.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Exploring Weakly Labeled Images for Video Object Segmentation With Submodular Proposal Selection - 2018ABSTRACT:Video object segmentation (VOS) is important for numerous computer vision issues, and handling it
PROJECT TITLE :Blind Stereoscopic Video Quality Assessment From Depth Perception to Overall Experience - 2018ABSTRACT:Stereoscopic video quality assessment (SVQA) may be a challenging drawback. It has not been well investigated
PROJECT TITLE :Joint Carrier Matching and Power Allocation for Wireless Video with General Distortion Measure - 2018ABSTRACT:In this Project, we gift a cross-layer style for a family of OFDM-primarily based video communications
PROJECT TITLE :CLEVER: A Cooperative and Cross-Layer Approach to Video Streaming in HetNets - 2018ABSTRACT:We tend to investigate the matter of providing a video streaming service to mobile users in an heterogeneous cellular network
PROJECT TITLE :A Scalable Approximate DCT Architectures For Efficient HEVC Compliant Video Coding - 2017ABSTRACT:An approximate kernel for the discrete cosine remodel (DCT) of length 4 is derived from the 4-point DCT defined by

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry