A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data - 2013


Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature selection algorithm (FAST) is proposed and experimentally evaluated in this paper. The FAST algorithm works in two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature that is strongly related to target classes is selected from each cluster to form a subset of features. Features in different clusters are relatively independent, the clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method. The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST and several representative feature selection algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF, with respect to four types of well-known classifiers, namely, the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER before and after feature selection. The results, on 35 publicly available real-world high-dimensional image, microarray, and text data, demonstrate that the FAST not only produces smaller subsets of features but also improves the performances of the four types of classifiers.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :In-Memory Stream Indexing of Massive and Fast Incoming Multimedia Content - 2018ABSTRACT:In this text, a media storm indexing mechanism is presented, where media storms are outlined as quick incoming batches. We
PROJECT TITLE :Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models - 2018ABSTRACT:The problem of low-rank matrix completion is taken into account in this Project. To use the underlying low-rank structure
PROJECT TITLE :A Fast Converging Channel Estimation Algorithm for Wireless Sensor Networks - 2018ABSTRACT:A group-membership affine projection algorithm is proposed which will estimate a complicated-valued channel matrix using
PROJECT TITLE :Fast Cell Discovery in mm-Wave 5G Networks with Context Information - 2018ABSTRACT:The exploitation of mm-wave bands is one amongst the key-enabler for 5G mobile radio networks. However, the introduction of mm-wave
PROJECT TITLE :Fast and Reliable Restoration Method of Virtual Resources on OpenStack - 2018ABSTRACT:We propose a quick and reliable restoration technique of virtual resources on OpenStack when physical servers or virtual machines

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry