Supporting Privacy Protection in Personalized Web Search - 2014 PROJECT TITLE :Supporting Privacy Protection in Personalized Web Search - 2014ABSTRACT:Personalized web search (PWS) has demonstrated its effectiveness in improving the quality of various search services on the Internet. However, evidences show that users' reluctance to disclose their private information during search has become a major barrier for the wide proliferation of PWS. We study privacy protection in PWS applications that model user preferences as hierarchical user profiles. We propose a PWS framework called UPS that can adaptively generalize profiles by queries while respecting user-specified privacy requirements. Our runtime generalization aims at striking a balance between two predictive metrics that evaluate the utility of personalization and the privacy risk of exposing the generalized profile. We present two greedy algorithms, namely GreedyDP and GreedyIL, for runtime generalization. We also provide an online prediction mechanism for deciding whether personalizing a query is beneficial. Extensive experiments demonstrate the effectiveness of our framework. The experimental results also reveal that GreedyIL significantly outperforms GreedyDP in terms of efficiency. Did you like this research project? To get this research project Guidelines, Training and Code... Click Here facebook twitter google+ linkedin stumble pinterest Privacy-Preserving Multi-Keyword Ranked Search over Encrypted Cloud Data - 2014 Learning Semi-Riemannian Metrics for Semisupervised Feature Extraction - 2011