Privacy-Preserving Multi-Keyword Ranked Search over Encrypted Cloud Data - 2014


With the advent of cloud computing, data owners are motivated to outsource their complex data management systems from local sites to the commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive data have to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. Thus, enabling an encrypted cloud data search service is of paramount importance. Considering the large number of data users and documents in the cloud, it is necessary to allow multiple keywords in the search request and return documents in the order of their relevance to these keywords. Related works on searchable encryption focus on single keyword search or Boolean keyword search, and rarely sort the search results. In this paper, for the first time, we define and solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted data in cloud computing (MRSE). We establish a set of strict privacy requirements for such a secure cloud data utilization system. Among various multi-keyword semantics, we choose the efficient similarity measure of "coordinate matching," i.e., as many matches as possible, to capture the relevance of data documents to the search query. We further use "inner product similarity" to quantitatively evaluate such similarity measure. We first propose a basic idea for the MRSE based on secure inner product computation, and then give two significantly improved MRSE schemes to achieve various stringent privacy requirements in two different threat models. To improve search experience of the data search service, we further extend these two schemes to support more search semantics. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given. Experiments on the real-world data set further show proposed schemes indeed introduce low overhead on computation and communication.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Privacy-Preserving Crowdsourced Spectrum Sensing - 2018ABSTRACT:Dynamic spectrum access is promising for mitigating worldwide wireless spectrum shortage. Crowdsourced spectrum sensing (CSS) refers to recruiting
PROJECT TITLE :Towards Privacy-Preserving Content-Based Image Retrieval in Cloud Computing - 2018ABSTRACT:Content-based image retrieval (CBIR) applications are rapidly developed along with the increase in the amount, availability
PROJECT TITLE :Privacy-Preserving Image Processing in the Cloud - 2018ABSTRACT:Countless personal pictures are generated in varied digital devices every day. The consequent large computational workload makes individuals flip to
PROJECT TITLE :FEDERAL: A Framework for Distance-Aware Privacy-Preserving Record Linkage - 2018ABSTRACT:In privacy-preserving record linkage, a number of knowledge custodians encode their records and submit them to a trusted third-party
PROJECT TITLE :Efficient and Privacy-Preserving Outsourced Calculation of Rational Numbers - 2018ABSTRACT:During this Project, we tend to propose a framework for economical and privacy-preserving outsourced calculation of rational

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry